Contribution from the University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

Nuclear Magnetic Resonance Studies of Aluminum(III) Fluoride Ion Complexes in Aqueous Solutions¹

By N. A. MATWIYOFF and W. E. WAGEMAN

Received November 10, 1969

Separate ¹⁹F nmr signals have been distinguished for the AlF₄⁻, AlF₃, AlF₂⁺, and AlF²⁺ complex ions present in aqueous solutions of AlF₃ and Al(NO₃)₈. From the relative signal areas the concentration equilibrium quotients, Q_n , have been calculated for the reactions $2AlF_n^{+3-n} \rightleftharpoons AlF_{n+1}^{+2-n} + AlF_{n-1}^{+4-n}$ ($Q_1 = 0.15$, $Q_2 = 0.14$, and $Q_3 = 0.038$). The equilibrium quotients are temperature independent and are remarkably insensitive to the solution composition. Below -15° , the ¹H nmr signal of water coordinated to Al(III) can be distinguished from that for bulk water. The relative ¹H signal areas are consistent with the formulation of the Al-F complexes as (H₂O)₅AlF²⁺, (H₂O)₄AlF₂⁺, and (H₂O)₈AlF₃. The Q values and the trends in the ¹⁹F chemical shifts are discussed.

Introduction

In the several previous ¹⁹F nmr studies of A1(III)–F⁻ ion complexes in aqueous solutions,^{2,3} it was possible to characterize directly only the species A1F²⁺ and A1F₂⁺. The range of solution compositions throughout which the fluoride ion complexes could be directly detected was limited in those studies by the use of NaF–A1(NO₃)₈ or HF–A1(NO₃)₈ solutions. For the former solutions, the A1(III) concentration is restricted by the slight solubility of NaA1F₄ in water and, for the latter, the useful [F⁻]/[A1(III)] ratios are restricted by the acid catalysis of F⁻ ion exchange from A1(III)– F⁻ complexes and by the affinity of the proton for F⁻ ion.

We have found that the salt $AlF_3 \cdot 9H_2O$ is very soluble in water and herein we report the direct characterization, by ¹H and ¹⁹F nmr spectroscopy, of the complexes $AlF_4(aq)^-, (H_2O)_3AlF_3, (H_2O)_4AlF_2^+$, and $(H_2O)_5AlF^{2+}$ in aqueous solutions of mixtures of Al- $(NO_3)_3 \cdot 9H_2O$ and $AlF_3 \cdot 9H_2O$. Also described in this report is a study of the equilibria among these complexes, the results of which indicate that the ratios of the activity coefficients of the complexes are remarkably insensitive to the solution composition.

Experimental Section

Materials.—The salt $Al(NO_3)_{\theta} \cdot 9H_2O$ (Baker and Adamson reagent) was recrystallized from distilled deionized water and the crystals obtained were dried *in vacuo* for 8 hr at 25°. In a typical preparation of the salt $AlF_3 \cdot 9H_2O$, 5.00 g of Al powder (Baker and Adamson reagent) was added gradually over a period of 3 hr to 75.0 g of 15% aqueous HF (obtained by dilution of Aristar 42% HF) contained in a Teflon beaker immersed in an ice-water bath. The reaction of Al with HF is highly exothermic and it is essential that the temperature of the reaction mixture be kept below 50°. If the Al powder is added to HF too rapidly, the slightly soluble α and β phases of $AlF_3 \cdot 3H_3O^4$ precipitate from the hot solution. After the last portion of the slight excess of Al powder had been added, the solution (pH 5) was filtered and the filtrate was allowed to stand in a -10° bath for 2 hr. Analyses.—Aluminum was determined by titration with a standard solution of ethylenediaminetetraacetic acid using Eriochrome Black T as the indicator.⁵ For the determination of aluminum in $AlF_3 \cdot 9H_2O$, it was necessary to separate Al(III) from F^- ion by precipitating hydrous Al_2O_3 from aqueous solutions of the fluoride salt with aqueous NH_3 . The hydrous oxide was then dissolved in nitric acid and Al(III) was determined in the conventional manner.⁶

In the determination of fluoride, a weighed sample of AlF_3 . 9H₂O was pyrohydrolyzed at 850–900° and the condensate containing HF was caught in a plastic beaker containing 1 *M* aqueous NaOH. The F⁻ ion concentration of the resulting solution was then determined by Mr. Ivan Kressin of this laboratory using a fluoride ion specific electrode.⁶

Measurements.—Proton and ¹⁹F nmr spectra were recorded by the use of a Varian DP-60 spectrometer operated at 56.45 MHz and equipped with a Varian variable-temperature probe insert. The temperature was controlled and the systems were calibrated in a conventional manner.⁷ The ²⁷Al spectra were obtained at 15.65 MHz by modifying the DP-60 spectrometer with the V-4280A sweep unit, the Varian variable-frequency V-4210A radiofrequency unit, and a variable-frequency V-4230 probe. The areas of the nmr peaks were obtained by planimetry of the recorded signals and are accurate to within $\pm 7\%$. In the spectra of some solutions, the ¹⁹F nmr signals of the complexes, AlF₄⁻, and AlF₃ overlapped. In the determination of the relative areas of these signals, the signals were first resolved by analyzing each of them as a pure Lorentzian curve.

Solutions were prepared by weight. Standard 5-mm o.d. glass nmr tubes (Wilmad) were used in the ¹⁹F and ¹H studies and 15-mm o.d. test tubes were used in the ²⁷Al studies. No etching of the glass was detected and no time dependence of the spectra was noted even for concentrated solutions which had been stored for 3 months. To some of the solutions HNO₄ was added to the extent of 0.01 or 0.10 m. Nitric acid at these concentrations had no effect either on the number of signals in the ¹⁹F nmr spectra or on their relative areas, but it broadened (by $\leq 40\%$) the signals for the AlF₄⁻ and AlF₃ complexes. This broadening is probably due to proton catalysis of F⁻ ion exchange. The pH

⁽¹⁾ Work performed under the auspices of the USAEC.

^{(2) (}a) R. E. Connick and R. E. Poulson, J. Am. Chem. Soc., 79, 5153
(1957); (b) R. E. Connick and R. E. Poulson, J. Phys. Chem., 63, 568
(1959).

⁽³⁾ M. Yamazaki and T. Takeuchi, Kogyo Kagaku Zasshi, 70, 656 (1967).
(4) W. F. Ehret and F. J. Frere, J. Am. Chem. Soc., 67, 64 (1945).

The crystals which had deposited were then collected by filtration and dried by drawing air through the filter for 1 hr. It was found that the crystals slowly deliquesced after being dried in this manner for more than 2 hr (at 25° and a relative humidity of 30%). The crystals were stored at -20° in a tightly sealed container. *Anal.* Calcd for AlF₈·9H₂O: Al, 10.98; F, 23.2. Found: Al, 11.0; F, 22.9. Calcd for Al(NO₈)₈·9H₂O: Al, 7.20. Found: Al, 7.21.

⁽⁵⁾ G. Schwarzenbach, "Complexometric Titrations," Interscience Publishers, Inc., New York, N. Y., 1957.

⁽⁶⁾ J. J. Lingane, Anal. Chem., 39, 881 (1967).

⁽⁷⁾ N. A. Matwiyoff, Inorg. Chem., 5, 788 (1966).

Figure 1.—Temperature dependence of the ¹⁹F nmr spectra of a 0.997 m solution of AlF₈·9H₂O in water. The magnetic field increases from left to right.

was not controlled in these studies: $1 m \text{AIF}_3 \cdot 9H_2O$ exhibited pH 5 and $2 m \text{Al}(\text{NO}_3)_3 \cdot 9H_2O$ exhibited pH 1.4.

Results

1. Assignment of the ¹⁹F Nmr Signals.—In Figure 1 the temperature dependence of the ¹⁹F nmr spectra of an aqueous solution of $A1F_3 \cdot 9H_2O$ is summarized. Representative spectra obtained at -10° for aqueous solutions of mixtures of $A1F_3 \cdot 9H_2O$ and $A1(NO_3)_3 \cdot 9H_2O$ are reproduced in Figure 2. As indicated in the figures, the lowest field ¹⁹F resonance is assigned to the $A1F_4^$ ion and the remaining resonances, in the order of their occurrence at increasing field strengths, are assigned to the species $A1F_3$, $A1F_2^+$, and $A1F^{2+}$.

The assignments are based upon the fact that the equilibrium quotients, Q, calculated for reactions 1–3 from the species concentrations derived from the relative signal areas are constant.

 $2\mathrm{AlF}(\mathrm{aq})^{2+} \rightleftharpoons \mathrm{Al}(\mathrm{aq})^{3+} + \mathrm{AlF}_{2^{+}} \qquad Q_1 \qquad (1)$

$$2\mathrm{AlF}_{2}(\mathrm{aq})^{+} \rightleftharpoons \mathrm{AlF}_{3}(\mathrm{aq}) + \mathrm{AlF}^{2+} \qquad Q_{2} \qquad (2)$$

$$2\operatorname{AlF}_{\mathfrak{z}}(\operatorname{aq}) \rightleftharpoons \operatorname{AlF}_{4}(\operatorname{aq})^{-} + \operatorname{AlF}_{2}^{+} \qquad Q_{\mathfrak{z}} \qquad (3)$$

In deriving the species concentrations two assumptions were made: (1) all the F⁻ ions in the solutions of AlF₃ and of mixtures of AlF₃ and Al(NO₃)₃ are present in the form of aluminum complexes and (2) the ¹⁹F resonance observed at the highest field is indeed due to the AlF²⁺ ion. In none of the solutions studied here could a resonance due to the free F⁻ ion be detected even when the solutions were doped with Cu(II) ion^{8,9}—in control experiments using aqueous NaF solutions doped with Cu(ClO₄)₂ a free F⁻

Figure 2.—The ¹⁹F nmr spectra of representative aqueous solutions of AlF₃ and Al(NO₃)₃ at -10° . The magnetic field increases from left to right.

ion resonance at approximately 2000 Hz downfield of the resonances due to the Al–F complexes could be detected for solutions as dilute as 0.03 *m* NaF. Also without recourse to the equilibria involved, we can assume confidently that the highest field ¹⁹F resonance is due to the AlF²⁺ ion, because at the highest ratios, [Al(III)]/[F], that resonance was the only one detected both in concentrated solutions containing $Al(NO_3)_8$ -AlF₃ and in dilute solutions containing NaF– $Al(NO_3)_8$.

In Table I are listed the species concentrations obtained from the relative areas of the ¹⁹F nmr signals in the spectra of representative AlF₃ solutions at -15° . In deriving the concentrations it was assumed that the amount of AlF^{2+} ion in the AlF_3 solutions is negligible-no ¹⁹F signal for the AlF²⁺ ion could be detected in these solutions over a wide range of temperatures and spectrometer settings. Considering the wide range of solution composition employed, the constancy of the concentration equilibrium quotients calculated on the basis of reaction 3 (the Q_3 values listed in Table I) provides justification for the assignment of the ¹⁹F signals to the complexes $A1F_4$, $A1F_3$, and AlF_2^+ . This assignment requires that the ratio of the area of the low-field signal (AlF_4^-) to that of the high-field one (AlF_2^+) be 2:1. Although that ratio is 2:1 within the limits of error of the measurement of the signal areas, the overlap between the

⁽⁸⁾ Because Cu(II) ion drastically shortens the relaxation times of ¹⁹F,⁹ its presence even at low concentrations (<10⁻² M) allows use of high radio-frequency power levels without causing saturation of the ¹⁹F resonance.

⁽⁹⁾ M. Eisenstadt and H. L. Friedman, J. Chem. Phys., 48, 4445 (1968)

TABLE I

CONCENTRATIONS AND EQUILIBRIUM QUOTIENTS FOR THE FORMATION OF ALUMINUM FLUORIDE COMPLEXES IN

Representative Aqueous Solutions of AlF3 at -15° Derived from the Relative Areas of the ¹⁹F Nmr Signals^a Formal

concn

of AlF3,	-Derived cor	icn of Al-F co	omplexes, ^b m	
m	AlF4 ⁻	AlF ³	AlF_2 +	Qs^{σ}
1.165	0.169 (2.10)	0.836 (7.78)	0.161 (1.00)	0.0388
0.997	0.140 (1.93)	0.714(7.38)	0.145(1.00)	0.0398
0.495	0.0656 (1.89)	0.360(7.77)	0.0694(1.00)	0.0351
0.376	0.0540 (2.05)	0.270 (7.67)	0.0527(1.00)	0.0390
			Av	0.038 ± 0.008^{d}

^a Since it was assumed that all F⁻ ions are present in the form of Al-F complexes (see text), the concentrations of the complexes can be calculated readily using these equations: [total formal F⁻] = 4[AlF₄⁻] + 3[AlF₃] + 2[AlF₂⁺]; [total formal AlF₃] = [AlF₂⁺] + ²/₈[AlF₂⁺](A_{AlF₂}) + ¹/₂[AlF₂⁺](A_{AlF₄}-), where, for example, A_{AlF_3} represents the area of the ¹⁹F signal assigned to AlF₃. ^b Relative areas of ¹⁹F signals in parentheses $\pm 6\%$. ^c Q₃ is the equilibrium quotient for reaction 3: Q₃ = [AlF₂⁺][AlF₄⁻]/[AlF₃]². ^d Q₃ is the average value obtained using ten different solutions in which the formal AlF₄ concentration was varied between the limits 0.25 and 1.25 m. $cis-AlF_3 \implies trans-AlF_3$ (4)

as a function of solution composition. For *cis*-AlF₃, the F atoms would be equivalent and should give rise to a single ¹⁹F signal, whereas for *trans*-AlF₃ the two equivalent equatorial ¹⁹F atoms should give rise to a ¹⁹F signal twice as intense as that for the unique axial ¹⁹F atom of the *trans*-AlF₃ isomer. We can exclude this interpretation because it requires that the relative areas of the signals we have assigned to AlF₄⁻ and AlF₂⁺ be 2:1 even for solutions containing Al(NO₃)₃. That this requirement is not fulfilled is evident from the spectra reproduced in Figure 2 and the data collected in Table II.¹¹

In Table II are collected the species concentrations obtained from the relative areas of the ¹⁹F nmr signals in the spectra of representative aqueous solutions containing AlF₃ and Al(NO₃)₃. Again, the constancy of the equilibrium quotients, Q_1 and Q_2 , calculated on the basis of reactions 1 and 2, respectively, confirms the assignment of the ¹⁹F signals.

Table	п
-------	---

 $\label{eq:concentrations} and Equilibrium Quotients for the Formation of Aluminum Fluoride Complexes in Representative Aqueous Solutions of AlF_3 and Al(NO_3)_3 at -15° Derived from the Relative Areas of the 19F Nmr Signals⁴$

	Formal co soli	ncn of initial ite. m			1^{3+} complexes $b m$				
No.	AlF:	Al(NO ₃) ₃	AlF4-	AlF3	AlF ₂ +	A1F ²⁺	Als+c	Q_2^{d}	Q_1^d
1	1.168	0.276	0.080(2.00)	0.528(9.90)	0.723(9.03)	0.160(1.00)		0.16	
2	1.058	0.721		0.213(1.20)	1.003(3.77)	0.532(1.00)	• • •	0.12	
3	1.480	1.220		0.252(0.75)	1.340(2.65)	1.010(1.00)	0.10	0.14	0.13
4	1.058	1.743		0.051(0.10)	0.740(0.96)	1.541(1.00)	0.469	0.14	0.15
5	0.403	0.670			0.294(0.95)	0.620(1.00)	0.159		0.12
6	0.785	1.545		0.021(0.05)	0.502(0.78)	1.287(1.00)	0.52	0.11	0.16
7	0.933	3 460			0.306(0.28)	2.187(1.00)	1,900		0.12
8	0.445	1.740			0.180(0.37)	0.974(1.00)	1.031		0.19
9	0.231	2.086			0.031(0.10)	0.630(1.00)	1.656		0.13

^a See footnote *a*, Table I. ^b Relative areas of ¹⁹F signals in parentheses $\pm 6\%$. ^c Al³⁺ concentration obtained by difference: [Al³⁺] = [total formal Al(III)] - Σ_n [AlF_n]. ^d Q_2 and Q_1 are the concentration equilibrium quotients for reactions 2 and 1, respectively. $Q_2(av) = 0.14 \pm 0.03$; $Q_1(av) = 0.15 \pm 0.03$.

intense AlF₃ signal and the weak AlF₄⁻ one leads to a large error in the estimated area of the latter (see Experimental Section, Measurements). To exclude systematic errors in the data analysis, we have taken advantage of the large chemical shifts in the ¹⁹F signals of anionic fluoride ion complexes induced by cobalt(II) ion.¹⁰ In Figure 1 is reproduced an ¹⁹F nmr spectrum of a representative aqueous solution of AlF₃ doped with Co(ClO₄)₂. Because the contact interaction between the Co(II) and AlF₄⁻ ions induces a large separation between the AlF₃ and AlF₄⁻ ion resonances, an accurate area, 2.00 ± 0.05 , of the AlF₄⁻ ion resonance relative to that of the AlF₂⁺ ion in all solutions employed was obtained.

On the basis of the relative 19 F signal areas of the AlF₃ solutions alone, one could argue that the chemical events monitored in nmr spectroscopy are those summarized in eq 4 which would lead to equilibrium quotients different from these calculated for the reaction in eq 3 but which are, nonetheless, constant

A test of the validity of the treatment of the data discussed above is provided by the requirement that the solutions to which the species concentration listed in Table II apply be electrically neutral. A comparison between the actual NO_3^- ion concentration and the NO_3^- ion concentration required to balance the charge of the cations is provided in Table III for a few representative solutions. Considering the errors involved in deriving the cation concentrations, the agreement between the actual NO_3^- ion concentration and that required to maintain electroneutrality is surprisingly good.

The calculated equilibrium constants are independent of the temperature within the ranges studied: Q_1 , -15 to 90°; Q_2 , -15 to 40°; Q_3 , -20 to 0°. Depending upon the solution composition, coalescence of the ¹⁹F nmr signals of the various Al(III)-F⁻ ion complexes occurs within the following temperature

⁽¹¹⁾ Each of the complexes, AlF_4^- , AlF_3 , and AlF_2^+ , can exist as *cis* and *trans* isomers. In none of the spectra could we detect separate signals for these isomers. Either the more symmetrical isomer is formed exclusively in this system or, more likely, the ¹⁹F chemical shift between isomers is very small.

Figure 3.—Temperature and solution composition dependence of the ¹⁹F chemical shifts of the AlF₂⁺ (\bullet) and AlF₃ (\odot) complexes downfield relative to those of the internal standard AlF²⁺. Formal solution compositions: 1.168 *m* AlF₃ and 0.276 *m* Al(NO₃)₃ (\bullet and \odot); 1.058 *m* AlF₃ and 0.721 *m* Al(NO₃)₃ (\bullet and ϕ); 1.480 *m* AlF₃ and 1.220 *m* Al(NO₃)₃ (\bullet and \bullet); 0.933 *m* AlF₃ and 3.460 *m* Al(NO₃)₃ (\bullet - and -O-).

ranges: AlF_4^- with AlF_3 , -5 to $+5^\circ$; AlF_3 with AlF_2^+ , 35 to 40° ; and AlF_2^+ with AlF^{2+} , $>90^\circ$.¹²

In the calculation of Q_3 from data obtained above the coalescence temperature of the AlF₄⁻ and AlF₃ resonances, it was assumed that for solutions containing only the initial solute AlF₃, the concentration of AlF₄⁻ is equal to the concentration of AlF₂⁺ (for which a separate ¹⁹F resonance was distinguished). For these solutions, the concentration of AlF₃ was obtained by difference using the area of the coalesced AlF₄⁻-AlF₃

TABLE III					
Comparison between the Actual NO_3^- Ion Concentration					
and the Concentration Required to Maintain					
Electroneutrality for Representative Solutions of					
AlF_3 and $\mathrm{Al(NO}_3)_3$ at -15°					

Formal initial s AlF≀	olute, ^a m Al(NO3)3	Actual conen of NO3 , m	Conen of NO3 ⁻ required to maintain electroneutrality ^b
1.058	0.721	2.163	2.07
1.480	1,220	3.660	3.66
1.058	1.743	5.229	5.23
0.403	0.670	2.010	2.12
0.231	2.086	6.258	6.24

^{*a*} These solutions correspond to entries 2, 3, 4, 5, and 9 of Table II, respectively. ^{*b*} The concentration of NO₃⁻ ion required to maintain electroneutrality is obtained from $[NO_3^-] = \sum_i m_i z_i$, where m_i and z_i represent the derived molality and charge of a given cation.

resonance relative to that of AlF_2^+ (see, for example, footnote *a* of Table I).

2. Relative Chemical Shifts of the ¹⁹F Nmr Signals. -The ¹⁹F chemical shifts of the Al³⁺-F⁻ ion complexes depend markedly upon the composition of the solution and the temperature. In Figure 3, that dependence is summarized for a representative set of solutions. It should be emphasized that the shifts summarized in Figure 3 are relative to that of the internal standard AIF²⁺. Representative chemical shifts of the AlF²⁺ complex at 33° upfield with respect to the external standard trifluoroacetic acid are: 79.5 ppm for a solution 1.058 m in AlF₃ and 0.721 m Al- $(NO_3)_3$; 79.5 ppm for 1.480 m AlF₃ and 1.220 m $AI(NO_3)_3$; 79.6 ppm for 0.785 m AIF_3 and 1.545 m AI_3 (NO₃)₃; 79.5 ppm for 0.445 m AlF₃ and 1.740 m Al- $(NO_3)_3$. The temperature coefficient of the ¹⁹F shift of the AlF^{2+} complex in each of these solutions is small: ~ 0.01 ppm/deg.

3. ¹H Nmr.—The temperature dependence of the ¹H nmr spectra of a typical aqueous solution of AlF₃ and Al(NO₃)₃ is summarized in Figure 4. From the composition dependence of the pmr spectra at the lowest temperatures, the low-field signal can be assigned to H₂O in the first coordination sphere of the AlF_n⁺³⁻ⁿ complexes and the high-field signal to H₂O in the bulk of the solvent. Although the individual AlF_n⁺³⁻ⁿ complexes could, in principle, give rise to separate pmr signals, we could detect only a single coordinated H₂O resonance over a wide range of sweep fields and spectrometer settings. Because that resonance is a symmetrical Lorentzian line, it appears that the proton shifts of the various complexes are identical.

Using the solution compositions derived from the ¹⁹F spectra, we have calculated the relative areas of coordinated and bulk water to be expected for various values of q in the $(H_2O)_qAlF_n^{+3-n}$ complexes. The results, which are summarized in Table IV for a few solutions, show that the complexes are best represented by the formulas $(H_2O)_5AlF^{2+}$, $(H_2O)_4AlF_2^+$, and $(H_2O)_3-AlF_3$. In a previous proton nmr study, ¹³ it was shown

(13) N. A. Matwiyoff, P. E. Darley, and W. G. Movius, Inorg. Chem., 7, 2173 (1968).

⁽¹²⁾ The ¹⁹F line widths of these complexes are dominated by chemical exchange of ¹⁹F over a wide temperature range. We have not been able to account for the temperature and solution composition dependence of the ¹⁹F exchange rates in terms of a simple dissociation mechanism (e.g., AlF_n+³⁻ⁿ \rightleftharpoons AlF_n-1⁴⁻ⁿ + F⁻). Instead, the data suggest that the dominant path involves cooperative exchange of ¹⁹F among the Al(III) complexes without the intervention of free F⁻ ion. The low apparent activation energies for the exchange ($E_a = 8-10$ kcal) and the lack of an effect by added Cu(II) ion on the exchange rates are consistent with the latter mechanism.

Comparison between the Calculated and Measured Relative Areas of the Proton Resonances in Bulk Water and Water Coordinated in the $(H_2O)_o AlF_n^{+3-n}$ Complexes^a

TABLE IV

Formal soln	Ramati ^a	R_{caled}^{c}	Formal soln	Revot1 ^a	R_{caled}^{c} (for $a = 6$ and 4)
2 3	0.162 0.260	$\begin{array}{c} (0.14 \\ 0.156 \\ (0.074) \\ 0.268 \\ (0.134) \end{array}$	4 8	$0.310 \\ 0.274$	0.325 (0.188) 0.269 (0.205)

^a Measured area of the coordinated H₂O resonance relative to that for bulk water obtained from spectra recorded at -25° . ^b Entries correspond to those of Table II. ^c Relative area calculated by assuming a distribution of the total amount of water into the bulk environment and into the complex ions Al(OH₂)₆³⁺, FAl(OH₂)₅²⁺, F₂Al(OH₂)₄²⁺, and F₈Al(OH₂)₆. Values in parentheses were calculated by assuming coordination of water in the complex ions Al(OH₂)₆³⁺, FAl(OH₂)₈²⁺, F₂Al(OH₂)₂⁺, and F₈Al-OH₂.

that the only important Al(III) complex present in concentrated aqueous solutions of Al(NO₃)₃ is the Al(OH₂)₆³⁺ ion. Because a coordinated H₂O resonance could be distinguished only for solutions containing small amounts of AlF₄⁻, we could not evaluate q for that complex.

4. ²⁷Al Nmr.—In the temperature range -20 to $+33^{\circ}$, the ²⁷Al resonance for each of the solutions studied here consists of a single signal shifted slightly downfield (≤ 2 ppm) and broadened appreciably with respect to the resonance of the external standard, 1 *m* aqueous Al(NO₃)₃. For example, the ²⁷Al chemical shifts and line widths of 1 *m* AlF₃ and 1 *m* Al(NO₃)₃ aqueous solutions at $+33^{\circ}$ are, respectively, -1.5 ppm and 1.8 G and 0.00 ppm and ≤ 100 mG.

Because the ²⁷Al resonance did not provide any additional direct information about the individual AlF_n^{+3-n} complexes, we did not conduct an intensive study of the composition and temperature dependence of the ²⁷Al shifts and signal shapes. However, we did observe a ²⁷Al resonance having the proper signal area in the absorption mode of detection and the proper signal amplitude in the dispersion mode to account for all the Al(III) in each of the solutions of AlF₃ and Al(NO₃)₃ (including those of AlF₃ alone in which all the Al(III) is present in the form of AlF_3 , $A1F_2^+$, and $A1F_4^-$). The ²⁷Al chemical shift differences among the individual Al-F complexes are apparently small compared to the signal widths. The signal areas and amplitudes were compared to those of a standard 1 m aqueous $Al(NO_3)_3$ solution at the same spectrometer settings (which allowed the detection of a pure Lorentzian signal unbroadened by modulation and saturation effects) of radiofrequency field, modulation amplitude, field sweep rates, etc.

These observations are important because they refute an earlier proposal that the decrease in the "intensity" of the ${}^{27}\text{Al}{}^{3+}$ resonance in the presence of F⁻ ion can be used to calculate the amount of "uncomplexed" Al(OH₂)₆³⁺ ion present in such solutions.¹

In the latter study, emphasis was placed upon the change induced in the amplitude of the ${}^{27}A1$ resonance of $A1(OH_2)_6{}^{2+}$ ion by the F⁻ ion. The expectation

Figure 4.—Temperature dependence of the proton nmr spectrum of an aqueous solution of AlF₃ and Al(NO₃)₃.

was that because ²⁷Al has a large quadrupole moment, mixed complexes such as $(H_2O)_qAlF_n^{+3-n}$ would possess a large field gradient at the Al(III) ion and consequently would exhibit broad, nondetectable ²⁷Al resonances. The resonance is indeed broadened but not beyond detection.

Discussion

The ¹⁹F and ¹H nmr spectra demonstrate that the species $Al(OH_2)_5F^{2+}$, $Al(OH_2)_4F_2^+$, $Al(OH_2)_3F_3$, and $AlF_4(aq)^-$ are kinetically well-defined entities in aqueous solutions of AlF_3 and $Al(NO_3)_3$. Although the temperature independence of the Q values for the equilibria among these complexes is consistent with the small enthalpies of formation that have been obtained calorimetrically for the individual Al-F ions, ¹⁴ the constancy of the *concentration* equilibrium quotients, Q, over a wide range of solution compositions is surprising.

If the equilibrium constants are to be meaningful thermodynamic parameters, then the ionic activities (γ) must be incorporated; *e.g.*, the thermodynamic equilibrium constant, K, for reaction 1 can be defined

$$K_1 = Q_1 \left[\frac{\gamma_{A1F^{2+}} \gamma_{A13^+}}{(\gamma_{A1F^{2+}})^2} \right]$$

If the activities are formulated properly, then K is a constant and any composition dependence of the activities is compensated by a corresponding composition dependence of the Q values.

Although the nmr technique, as we applied it, cannot be used to distinguish a *small* consistent trend of equilibrium quotients with solution composition, certainly a *large* change in these quotients would be expected on the basis of extensions of the Debye– Hückel limiting law. For example, the Davies approximation¹⁵ for mean ion activities, extended by others to single ions,¹⁶ eq 5, would require large variations of the Q's over the range of ionic strengths employed— $1 \leq I \leq 19$, where γ_i is the molal ionic activity of

$$-\log \gamma_{\rm i} = -0.5 Z_{\rm i}^2 \{ (\sqrt{I}/1 + B'' a \sqrt{I}) - C'' I \}$$
(5)

an ion of charge Z_i , I is the ionic strength, and B'', a, and C'' are "adjustable" constants.

Of course approximations like the Davies equation strictly apply only to dilute solutions and they have not been tested adequately at the high ionic strengths used in this study. Because these approximate equations contain a number of "adjustable" constants which are sensitive both to the ionic strength and nature of the ions involved, such a test would require a wide range of precise experimental data at high ionic strengths. Presently the appropriate data either are not available or are subject to ambiguities in interpretation.¹⁷

In this regard, it is of interest to point out that the Q values we have measured are much different from those we have calculated from the data of Brosset and Orring:¹⁸ $Q_1 = 0.078$; $Q_2 = 0.068$; $Q_3 = 0.078$. Brosset and Orring used an Fe(II)-Fe(III) electrode to obtain the equilibrium constants for the formation of the individual Al-F complex from F⁻ ion in NaNO₃-NaF-Al(NO₃)₃ solutions at 25° and at a constant ionic strength of 0.5. Our measurements were made at much higher ionic strengths and Al(III) concentrations. At this time, it is not possible to decide whether the discrepancy is due to a general ionic strength effect or a specific ion effect.¹⁹⁻²¹ Such a distinction could be made if the nmr measurements could be extended to dilute Al(III) solutions kept at constant ionic strength. We intend to obtain data for the latter solutions when nmr signal averaging equipment becomes available. It will also be of interest to obtain data for systems in which the "inert" counterion (NO₃⁻⁻ in this study) is varied.

The ¹⁹F resonance for the Al–F complexes as a set occur *upfield* with respect to the resonance of the free $F(aq)^-$ ion. Apparently, paramagnetic deshielding of F^- ion by hydrogen-bonded H₂O molecules^{22,23} is reduced in the Al–F complexes due to the dehydration of the $F(aq)^-$ ion which accompanies the formation of the Al–F bond. This dehydration effect on the ¹⁹F shielding must be large since it swamps the large deshielding expected for ¹⁹F in the Al–F complexes due to the electric field of Al(III). It has been estimated that upon hydration of the hypothetical "free" F^- ion, the ¹⁹F resonance shifts downfield by -155 ppm.²³

Such a large hydration effect can account qualitatively for the puzzling trend in the ¹⁹F shifts for the Al–F complexes which decrease in the order AlF²⁺ > AlF₂⁺ > AlF₃ > AlF₄⁻. Both the Saika–Slichter covalency theory²⁴ and the electric field effect treatments²⁵ of ¹⁹F shifts predict the reverse trend for these complexes. However, if hydration effects on the ¹⁹F shifts are predominant, the ¹⁹F shielding should decrease as the ease with which $F^-\cdots$ HOH hydrogen bonds are formed increases. On a simple electrostatic basis, one would expect that such hydrogen bonds would be formed most readily between HOH and the AlF₄⁻ ion and least readily between HOH and the AlF²⁺ ion.

The pronounced effect of electrolytes^{22,23,26,27} and temperature²³ changes upon the chemical shift of free $F(aq)^{-}$ have been attributed to ion-pair formation and dehydration effects. Connick and Poulson²⁶ have reported that NaNO₃ and NaClO₄ induce large upfield shifts of the ¹⁹F resonance of the $AlF_2(aq)^+$ and $AlF_2(aq)^+$ $(aq)^{2+}$ ions. The direction and concentration dependence of the shifts are consistent with an electrolyteinduced "dehydration" of the coordinated F^- ion. However, as summarized in Figure 3, the ¹⁹F resonances of AlF₃ and AlF₂⁺ in our systems shift *downfield* with increasing electrolyte [Al(NO₃)₃] concentration and temperature. The direction of the shifts apparently is not consistent with a simple "dehydration" mechanism.23 To assess anion and water structure effects on the ¹⁹F shifts, we intend to obtain data for systems in which the inert anion is varied.

 $^{(15)\,}$ C. W. Davies, "Ion Association," Butterworth and Co. Ltd., London, 1962, pp 34–60.

⁽¹⁶⁾ See, for example: R. A. Robinson, "The Structure of Electrolyte Solutions," W. J. Horner, Ed., John Wiley and Sons, Inc., New York, N. Y., pp 253-267; *Discussions Faraday Soc.*, **24**, 83 (1957); C. B. Monk, "Electrolytic Dissociation," Academic Press, Inc., New York, N. Y., 1961, p 153.

⁽¹⁷⁾ For example, most of the available thermodynamics data for the formation of complex ions are based upon activity measurements, such as conductivity studies which require the assumption of a limiting equivalent conductivity for the complex ion. Even when a concentration measurement such as electronic absorption spectroscopy can be applied, it often requires the simultaneous evaluation of an equilibrium constant and the molar absorptivity of the complex ion, in addition to the assumption that the molar absorptivities of the free and complex ion are independent of the solution composition.

⁽¹⁸⁾ C. Brosset and J. Orring, Svensk Kem. Tidskr., 55, 10 (1943).

⁽¹⁹⁾ There is a similar discrepancy between ¹⁹F nmr and activity data for the reaction BeF₈(aq)⁻ + F(aq)⁻ \rightleftharpoons BeF₄(aq)³⁻. Mesmer and Baes²⁰ used an emf method to obtain Q = 26.7 for dilute $(10^{-3} M)$ solutions of Be(II) and F⁻ in a 1 M NaCl aqueous solution. Feeney, *et al.*,²¹ used ¹⁹F nmr to obtain Q = 13-16 for aqueous solutions 0.2-0.6 m in (NH4)₂BeF₄.

⁽²⁰⁾ R. E. Mesmer and C. F. Baes, Jr., Inorg. Chem., 8, 618 (1969).

⁽²¹⁾ J. Feeney, R. Haque, L. W. Reeves, and C. P. Yue, Can. J. Chem., 46, 1389 (1968).

⁽²²⁾ J. N. Shoolery and B. N. Alder, J. Chem. Phys., 23, 805 (1955).

⁽²³⁾ C. Deverell, K. Schaumburg, and H. J. Bernstein, *ibid.*, **49**, 1276 (1968), and references therein.

⁽²⁴⁾ A. Saika and C. P. Slichter, *ibid.*, **22**, 26 (1954).

⁽²⁵⁾ A. D. Buckingham, Can. J. Chem., $\mathbf{38},\ 300$ (1960), and references therein.

 ⁽²⁶⁾ R. E. Connick and R. E. Poulson, J. Phys. Chem., 62, 1002 (1958).
 (27) A. Carrington, F. Dravnicks, and M. C. R. Symons, Mol. Phys., 3, 174 (1960).